Linear Algebra, Winter 2022 List 6

Eigenvalues, complex number intro

Let M be a square matrix. If $M\vec{v} = \lambda \, \vec{v}$ with $\vec{v} \neq \vec{0}$ then the vector \vec{v} is called an **eigenvector** of M and the number λ is called an **eigenvalue** of M. • The eigenvalues of M are exactly the numbers λ for which $\det(A - \lambda I) = 0.$ • The determinant of M is exactly equal to the product of all its eigenvalues. 138. Find an eigenvector of $\begin{bmatrix} 7 & -5 \\ 0 & 8 \end{bmatrix}$ corresponding to the eigenvalue 8. That is, find a non-zero vector $\begin{bmatrix} x \\ y \end{bmatrix}$ such that $\begin{bmatrix} 7 & -5 \\ 0 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 8 \begin{bmatrix} x \\ y \end{bmatrix}$. 139. Find the eigenvalues of $\begin{bmatrix} 4 & 1 \\ -2 & 8 \end{bmatrix}$. 140. (a) Find the eigenvalues of $\begin{bmatrix} 2 & 1 \\ 7 & 8 \end{bmatrix}$. (b) Find the eigenvectors of $\begin{bmatrix} 2 & 1 \\ 7 & 8 \end{bmatrix}$. 141. (a) Find the eigenvalues of $\begin{vmatrix} 4 & 1 \\ -8 & 8 \end{vmatrix}$. $\stackrel{\wedge}{\sim}$ (b) Find the eigenvectors of $\begin{vmatrix} 4 & 1 \\ -8 & 8 \end{vmatrix}$. 142. Find the eigenvalues of $\begin{vmatrix} 4 & 8 & 1 \\ 7 & 14 & 6 \\ 1 & 2 & 6 \end{vmatrix}$. 143. If the matrix M satisfies $M\begin{bmatrix}2\\-2\end{bmatrix} = \begin{bmatrix}-12\\12\end{bmatrix}$ and $M\begin{bmatrix}3\\3\end{bmatrix} = \begin{bmatrix}24\\-6\end{bmatrix}$ and $M\begin{bmatrix}7\\2\end{bmatrix} = \begin{bmatrix}21\\6\end{bmatrix}$, find the eigenvalues of M. 144. Calculate the determinant of a 3×3 matrix whose eigenvalues are 19, 1, and -5. 145. Expand (2+3a)(5-4a).

146. Re-write (1 + t)(8 + 3t) in the form _____+ t if $t^2 = 10$.

 $i^2 = -1$

- 147. Re-write (1+i)(8+3i) in the form $_ + _i$, knowing that $i^2 = -1$.
- 148. Give the determinant of a matrix whose eigenvalues are... (a) 4, 3, and 0. (b) 1 - 4i, 1 + 4i, and 2. (c) 9 and $\frac{1}{4}$.
- 149. Simplify each of the following: i^2 , i^3 , i^4 , i^5 , i^{15} , i^{202} , $i^{1285100}$, i^{-1} .

150. Write the following in the form a + bi, where a and b are real numbers.

	(a) $(-6+5i) + (2-4i)$	(e) $(1+i)(2-i)(3+2i)$
	(b) $(1+2i)(2+3i)$	(f) $(1-2i)^3$
	(c) $(-5+2i) - (2-i)$	(g) $(-2i)^6$
	(d) $(2-3i)(2+3i)$	(h) $(1+i)^4$
151.	Write $\frac{1+2i}{2-3i}$ in the form $a+bi$. (Hint:	$\frac{1+2i}{2-3i} \times \frac{2+3i}{2+3i}.)$

If z = a + bi, where a and b are real numbers, then the **real part** of z is a, and the **imaginary part** of z is b (not bi).

The **magnitude** (or **modulus**) of z = a + bi is the distance between (0,0) and (a,b) on an *xy*-plane; it is written as |z|. The **argument** of z is the angle between the positive x-axis and the line from (0,0) to (a,b); it is written as $\arg(z)$.

152. What is the real part of (5+6i)(2i)?

- 153. (a) Calculate the length of the hypotenuse of a right triangle whose legs have lengths 1 and $\sqrt{2}$.
 - (b) Calculate the distance between the points (0,0) and $(1,\sqrt{2})$.
 - (c) Calculate the magnitude of the vector $[1, \sqrt{2}]$, often written $|[1, \sqrt{2}]|$.
 - (d) Calculate the magnitude of the complex number $1 + \sqrt{2}i$, often written $|1 + \sqrt{2}i|$.
- 154. Compute |2 + 7i|.
- 155. What is the magnitude of $\sqrt{11}\cos(\pi/8) + \sqrt{11}\sin(\pi/8)i$?
- 156. (a) What is the real part of $1 \sqrt{3}i$?
 - (b) What is the imaginary part of $1 \sqrt{3}i$?
 - (c) Compute $|1 \sqrt{3}i|$. (d) Compute $\arg(1 \sqrt{3}i)$.
 - (e) Give values for r and θ such that $1 \sqrt{3}i = r(\cos(\theta) + i\sin(\theta))$.

157. Calculate each of the following:

- (a) the real part of 2i 7. (e) the real part of i^2
- (b) the imaginary part of (3+2i)(5i). (f) $\arg(-3i)$.
- (c) the imaginary part of 4. (g) $\arg(5+5i)$.
- (d) the imaginary part of i^2 (h) $\arg(5-5i)$.

Rectangular form: a + bi, or a + ib, or bi + a, or similar, where a and b are real numbers and usually are simplified. If a is zero, you can skip writing "0+"..., and if b = 0 you can skip writing ..."+0i".

Polar form: $r\cos(\theta) + r\sin(\theta)i$, or $r(\cos\theta + i\sin\theta)$, or similar. Requires $r \ge 0$.

158. Re-write $10\cos(-\frac{\pi}{4}) + 10\sin(-\frac{\pi}{4})i$ without trig functions.

159. Write each of the following in polar form.

That is, write each as $(\cos() + i\sin())$, where the angles for cosine and sine must be equal and the first blank must be positive.

- (a) $1 \sqrt{3}i$ (d) -3i (g) $\frac{\sqrt{3}-i}{7}$ (b) $-\sqrt{5} + \sqrt{15}i$ (e) $1 + \sqrt{3}i$ (c) 3 + 3i (f) $2 - 2\sqrt{3}i$ (h) $\sqrt{-1}$
- 160. Write $2 + \sqrt{2}\cos((3\pi/4)) + \sqrt{2}\sin((3\pi/4)i)$ in both rectangular and polar form.
- 161. Write each number below in both rectangular and polar form.

162. On a complex plane, draw the number(s)...

(a) 4-i(b) $\sqrt{2} - \sqrt{2}i$ and $-\sqrt{2} + \sqrt{2}i$ (c) $\frac{1+i}{\sqrt{2}}$ and $\frac{-1-i}{\sqrt{2}}$ (d) $-\frac{19}{29} - \frac{25}{29}i$ (e) 3-i and 3+i(f) $\frac{1-25i}{6}$

163. Re-write $(q n^{st})^3$ in the form $_n_^t$. 164. Re-write $(r e^{i\theta})^3$ in the form $_e_^i$.