Linear Algebra, Winter 2022
List 6
Eigenvalues, complex number intro
Let M be a square matrix. If

$$
M \vec{v}=\lambda \vec{v}
$$

with $\vec{v} \neq \overrightarrow{0}$ then the vector \vec{v} is called an eigenvector of M and the number λ is called an eigenvalue of M.

- The eigenvalues of M are exactly the numbers λ for which

$$
\operatorname{det}(A-\lambda I)=0
$$

- The determinant of M is exactly equal to the product of all its eigenvalues.

138. Find an eigenvector of $\left[\begin{array}{cc}7 & -5 \\ 0 & 8\end{array}\right]$ corresponding to the eigenvalue 8 . That is, find a non-zero vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ such that $\left[\begin{array}{cc}7 & -5 \\ 0 & 8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=8\left[\begin{array}{l}x \\ y\end{array}\right]$.
139. Find the eigenvalues of $\left[\begin{array}{cc}4 & 1 \\ -2 & 8\end{array}\right]$.
140. (a) Find the eigenvalues of $\left[\begin{array}{ll}2 & 1 \\ 7 & 8\end{array}\right]$. (b) Find the eigenvectors of $\left[\begin{array}{ll}2 & 1 \\ 7 & 8\end{array}\right]$.
141. (a) Find the eigenvalues of $\left[\begin{array}{cc}4 & 1 \\ -8 & 8\end{array}\right] \cdot \mathcal{*}(\mathrm{b})$ Find the eigenvectors of $\left[\begin{array}{cc}4 & 1 \\ -8 & 8\end{array}\right]$.
142. Find the eigenvalues of $\left[\begin{array}{ccc}4 & 8 & 1 \\ 7 & 14 & 6 \\ 1 & 2 & 6\end{array}\right]$.
143. If the matrix M satisfies

$$
M\left[\begin{array}{c}
2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-12 \\
12
\end{array}\right] \quad \text { and } \quad M\left[\begin{array}{l}
3 \\
3
\end{array}\right]=\left[\begin{array}{c}
24 \\
-6
\end{array}\right] \quad \text { and } \quad M\left[\begin{array}{l}
7 \\
2
\end{array}\right]=\left[\begin{array}{c}
21 \\
6
\end{array}\right],
$$

find the eigenvalues of M.
144. Calculate the determinant of a 3×3 matrix whose eigenvalues are 19,1 , and -5 .
145. Expand $(2+3 a)(5-4 a)$.
146. Re-write $(1+t)(8+3 t)$ in the form _ $+\ldots t$ if $t^{2}=10$.

147. Re-write $(1+i)(8+3 i)$ in the form $\quad+\ldots i$, knowing that $i^{2}=-1$.
148. Give the determinant of a matrix whose eigenvalues are...
(a) 4,3 , and 0 .
(b) $1-4 i, 1+4 i$, and 2 .
(c) 9 and $\frac{1}{4}$.
149. Simplify each of the following: $i^{2}, i^{3}, i^{4}, i^{5}, i^{15}, i^{202}, i^{1285100}, i^{-1}$.
150. Write the following in the form $a+b i$, where a and b are real numbers.
(a) $(-6+5 i)+(2-4 i)$
(e) $(1+i)(2-i)(3+2 i)$
(b) $(1+2 i)(2+3 i)$
(f) $(1-2 i)^{3}$
(c) $(-5+2 i)-(2-i)$
(g) $(-2 i)^{6}$
(d) $(2-3 i)(2+3 i)$
(h) $(1+i)^{4}$
151. Write $\frac{1+2 i}{2-3 i}$ in the form $a+b i$. (Hint: $\frac{1+2 i}{2-3 i} \times \frac{2+3 i}{2+3 i}$.)

If $z=a+b i$, where a and b are real numbers, then the real part of z is a, and the imaginary part of z is b (not $b i$).

The magnitude (or modulus) of $z=a+b i$ is the distance between $(0,0)$ and (a, b) on an $x y$-plane; it is written as $|z|$. The argument of z is the angle between the positive x-axis and the line from $(0,0)$ to (a, b); it is written as $\arg (z)$.
152. What is the real part of $(5+6 i)(2 i)$?
153. (a) Calculate the length of the hypotenuse of a right triangle whose legs have lengths 1 and $\sqrt{2}$.
(b) Calculate the distance between the points $(0,0)$ and $(1, \sqrt{2})$.
(c) Calculate the magnitude of the vector $[1, \sqrt{2}]$, often written $|[1, \sqrt{2}]|$.
(d) Calculate the magnitude of the complex number $1+\sqrt{2} i$, often written $|1+\sqrt{2} i|$.
154. Compute $|2+7 i|$.
155. What is the magnitude of $\sqrt{11} \cos (\pi / 8)+\sqrt{11} \sin (\pi / 8) i$?
156. (a) What is the real part of $1-\sqrt{3} i$?
(b) What is the imaginary part of $1-\sqrt{3} i$?
(c) Compute $|1-\sqrt{3} i|$.
(d) Compute $\arg (1-\sqrt{3} i)$.
(e) Give values for r and θ such that $1-\sqrt{3} i=r(\cos (\theta)+i \sin (\theta))$.
157. Calculate each of the following:
(a) the real part of $2 i-7$.
(e) the real part of i^{2}
(b) the imaginary part of $(3+2 i)(5 i)$.
(f) $\arg (-3 i)$.
(c) the imaginary part of 4 .
(g) $\arg (5+5 i)$.
(d) the imaginary part of i^{2}
(h) $\arg (5-5 i)$.

Rectangular form: $a+b i$, or $a+i b$, or $b i+a$, or similar, where a and b are real numbers and usually are simplified. If a is zero, you can skip writing " $0+$ "..., and if $b=0$ you can skip writing ..." $+0 i$ ".
Polar form: $r \cos (\theta)+r \sin (\theta) i$, or $r(\cos \theta+i \sin \theta)$, or similar. Requires $r \geq 0$.
158. Re-write $10 \cos \left(-\frac{\pi}{4}\right)+10 \sin \left(-\frac{\pi}{4}\right) i$ without trig functions.
159. Write each of the following in polar form.

That is, write each as $\quad(\cos (\ldots)+i \sin ($ \qquad)), where the angles for cosine and sine must be equal and the first blank must be positive.
(a) $1-\sqrt{3} i$
(d) $-3 i$
(g) $\frac{\sqrt{3}-i}{7}$
(b) $-\sqrt{5}+\sqrt{15} i$
(e) $1+\sqrt{3} i$
(c) $3+3 i$
(f) $2-2 \sqrt{3} i$
(h) $\sqrt{-1}$
160. Write $2+\sqrt{2} \cos (3 \pi / 4)+\sqrt{2} \sin (3 \pi / 4) i$ in both rectangular and polar form.
161. Write each number below in both rectangular and polar form.
(a)

(b)

(c)

(d)

(e)

(f)

162. On a complex plane, draw the number(s)...
(a) $4-i$
(d) $-\frac{19}{29}-\frac{25}{29} i$
(b) $\sqrt{2}-\sqrt{2} i$ and $-\sqrt{2}+\sqrt{2} i$
(e) $3-i$ and $3+i$
(c) $\frac{1+i}{\sqrt{2}}$ and $\frac{-1-i}{\sqrt{2}}$
(f) $\frac{1-25 i}{6}$
163. Re-write $\left(q n^{s t}\right)^{3}$ in the form \qquad $n-{ }^{t}$.
164. Re-write $\left(r e^{i \theta}\right)^{3}$ in the form \qquad $e-i$.

